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Dynamic reconfiguration of cortical 
functional connectivity across brain 
states
Iain Stitt1,2, Karl J. Hollensteiner1, Edgar Galindo-Leon1, Florian Pieper1, Eva Fiedler3, Thomas 
Stieglitz3, Gerhard Engler1, Guido Nolte1 & Andreas K. Engel1

Throughout each day, the brain displays transient changes in state, as evidenced by shifts in behavior 
and vigilance. While the electrophysiological correlates of brain states have been studied for some time, 
it remains unclear how large-scale cortico-cortical functional connectivity systematically reconfigures 
across states. Here, we investigate state-dependent shifts in cortical functional connectivity by 
recording local field potentials (LFPs) during spontaneous behavioral transitions in the ferret using 
chronically implanted micro-electrocorticographic (µECoG) arrays positioned over occipital, parietal, 
and temporal cortical regions. To objectively classify brain state, we describe a data-driven approach 
that projects time-varying LFP spectral properties into brain state space. Distinct brain states displayed 
markedly different patterns of cross-frequency phase-amplitude coupling and inter-electrode phase 
synchronization across several LFP frequency bands. The largest across-state differences in functional 
connectivity were observed between periods of presumed slow-wave and rapid-eye-movement-
sleep/active-state, which were characterized by the contrasting phenomena of cortical network 
fragmentation and global synchronization, respectively. Collectively, our data provide strong evidence 
that large-scale functional interactions in the brain dynamically reconfigure across behavioral states.

Across the sleep/wake cycle we typically transition between states of varying vigilance and unconsciousness. Such 
transitions in behavioral state (conscious vs asleep) are correlated with changes in spatiotemporal patterns of 
neural activity, reflecting the close link between behavioral state and brain state across the sleep/wake cycle. The 
electrophysiological correlates of various brain states have been extensively studied with recordings of the electro-
encephalogram (EEG), local field potentials (LFP), and cellular activity throughout the past 60 years. Accordingly, 
brain states have been increasingly defined based on the presence of distinct patterns of oscillatory neural activ-
ity1. Although these approaches have provided a wealth of knowledge on brain state dependent fluctuations 
in local neuronal activity, recent studies have shifted towards identifying the spectral signatures of large-scale 
functional interaction in the brain2, 3. One of the motivations for this shift toward investigating the functional 
connectivity of different brain states has been empirical and theoretical work suggesting that the complexity 
of interactions between functionally specialized brain regions is a key mechanism related to consciousness4–10. 
However, it remains unclear how such interactions between functionally specialized brain regions dynamically 
reconfigure across brain states.

The majority of previous studies on large-scale functional connectivity are confounded by the fact that sub-
jects tend to spontaneously drift between distinct brain states throughout the duration of recordings11–13, leading 
some to call for a renewed approach that captures the true time-varying nature of inter-areal communication by 
discarding the assumption that functional connectivity is spatiotemporally invariant14, 15. Under normal circum-
stances, the most drastic transitions in state, both in terms of behavior and neural activity, occur throughout alter-
nations between wakefulness and sleep. Our aim in this study was to investigate cortical functional connectivity in 
a time-resolved manner as ferrets spontaneously transition between brain states. Given that the dynamic forma-
tion and fragmentation of large-scale brain networks is proposed to underlie consciousness, we hypothesize that 
transitions in brain state lead to dynamic reorganization of both local and long-range cortico-cortical functional 
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connectivity. To test this hypothesis, we recorded LFPs during spontaneous behavior, including movement, quiet 
awake, and sleep periods, using custom micro-electrocorticographic (µECoG) arrays chronically implanted in 
ferrets. The advantage of this approach was that, in contrast to humans, ferrets alternate relatively quickly across 
sleep, resting, and awake states16, 17. This enables us to sample neural data from many consecutive sleep/awake 
cycles with relatively short recordings. In contrast to previous approaches that subjectively classify brain state into 
several discrete states based on electrophysiological and electromyographic signals, we employ an approach that 
captures the most relevant time-varying components of µECoG signals, and project these as continuous variables 
into state space. Brain states in this study were thus exclusively classified based on electrophysiological signatures 
of neural activity detected in cortex. Crucially, this state-classification method enabled the examination of how 
patterns of large-scale cortical functional connectivity evolve as animals traverse through brain state space. Our 
data reveal that patterns of cortical synchronization systematically reconfigure across brain states, with the most 
striking across-state changes occurring between periods of presumed slow-wave and rapid eye movement sleep.

Results
We recorded cortical surface LFPs from 5 ferrets that were chronically implanted with 64 channel custom 
designed µECoG arrays (Fig. 1). The spacing of the µECoG array electrodes (1.5 mm) ensured that we sam-
pled data from vast areas of occipital, parietal, and temporal cortex simultaneously. To assess large-scale cortical 
dynamics associated with spontaneous brain state transitions, animals were recorded across multiple sessions 
with a minimum length of 2 hours each. The short sleep/wake cycle of the ferret16, 17 ensured that we captured 
several brain state transitions during each recording session.

Projection of time-varying spectral properties into state space. To assess how LFP spectral charac-
teristics evolve across spontanius behavioral recordings, we computed sliding-window estimates of µECoG signal 
power across each recording session (Fig. 2A). Cortical LFP power spectra displayed systematic and recurring 
fluctuations that tracked spontaneous shifts in behavioral state, as measured by animal movement. For example, 
while animals were alert and moving about, LFP spectra were typically characterized by theta (4–6 Hz) oscilla-
tions coupled with relatively low delta oscillation power (0.8–3 Hz). In contrast, when animals were stationary 
µECoG spectra tended to display strong delta and low gamma (30–80 Hz) power (Fig. 2A). To capture the spec-
tral signatures that most reliably reflect transitions in brain state throughout recordings, we computed principal 
component analysis (PCA) on the z-score normalized LFP amplitude spectrogram (Fig. 2A, right). This step 
reduces dimensionality of spectrograms by capturing state-dependent covariance across all LFP frequencies. The 
new principal component coordinate system therefore maximally captures state-dependent fluctuations in LFP 
signal amplitude. The first four principal components collectively explained more than 80% of spectrogram var-
iance (Fig. 2B). Therefore, only the first four principal components were used for construction of state-space and 
subsequent analysis steps.

By examining principal component eigenvector coefficients as a function of LFP frequency, one can gain an 
intuitive understanding of how each principal component is derived from the input spectrogram (Fig. 2C). For 
example, the first principal component predominantly captures fluctuations in the amplitude of delta, theta, and 
gamma bands, whereas the second principal component captures fluctuations in the amplitude of alpha and 
gamma rhythms. Principal components are derived by finding eigenvectors that maximize variance across mul-
tidimensional datasets. Therefore, performing PCA on each individual recording session would lead to varying 
estimates of PCA eigenvector coefficients. To ensure that spectral amplitudes from all animals were translated into 

Figure 1. µECoG design and placement over ferret posterior cortex. (A) The µECoG consists of 64 platinum 
electrodes of 250 µm diameter distributed across three polymide fingers to enable the array to adapt to the 
curved surface of the cortex. Inter-electrode spacing was 1.5mm. (B) Placement of custom designed µECoG 
array over the left hemisphere during implantation of animal #3. (C) Ferret posterior cortex parcellated into 
16 functionally and anatomically distinct regions according to Bizley et al. (2007)53). Abbreviations: LS: lateral 
sulcus; SSS: suprasylvian sulcus; A: anterior; P: posterior; M: medial; L: lateral; S2/S3: somatosensory cortex 2 & 
3; PPr/c: rostral/caudal posterior parietal cortex; 17,18,19,20,21: occipital/visual cortex; SSY: suprasylvian field; 
A1: primary auditory cortex; AAF: anterior auditory field; APF: anterior dorsal field; AVF: anterior ventral field; 
PPF: posterior pseudosylvian field; PSF: posterior suprasylvian field.
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an equivalent state space coordinate system, we performed PCA on data from one animal as a training dataset. 
The resulting PCA eigenvector coefficients were then convolved with z-scored spectral amplitude matrices from 
all other sessions and animals. To illustrate that principal components systematically fluctuate in a timeframe 
consistent with the duration of the ferret sleep/wake cycle, we computed the autocorrelation of the first four 
principal components across all recording sessions. The first, third, and fourth principal components displayed 
prominent autocorrelation side peaks at approximately 23 minutes (Fig. 2D), indicating that spectral signatures 
captured by these components display periodicity in a time scale that is consistent with the average duration of 
the ferret sleep/wake cycle16, 17. In contrast to other components, the second principal component displayed no 
side peaks and a sharper autocorrelation peak (returning to ~0 at ± 2 minutes), indicating that spectral signatures 
captured by this component fluctuate on a much shorter timescale (Fig. 2D, blue trace). Now that we have shown 
that principal component analysis can be used to project time-varying spectral properties into brain state space, 
the next step was to objectively cluster data represented in state space into an optimal number of brain states.

Figure 2. State-dependent fluctuations in spectral power and projection of neural data into PCA-derived state-
space. (A) A representative example µECoG power spectrogram from an electrode placed over visual cortical 
area 21. Accelerometer power is plotted below the spectrogram to show how animals behavioral state changed 
over the duration of the recording. Note the recurring fluctuations in LFP power in the delta (0.8–3 Hz), theta 
(4–6 Hz), alpha (8–16 Hz), and gamma (30–80 Hz) frequency bands that track transitions in animal state. PCA 
was performed on the z-scored amplitude spectrogram (upper right, 90° rotated) to capture state-dependent 
fluctuations in LFP amplitude and project data into state-space (lower right). (B) The amount of variance 
explained by each principal component for the representative recording used to compute PCA coefficients. The 
first four principal components cumulatively explain more than 80% of total spectrogram variance (C) Principal 
component eigenvector coefficients for the first four principal components as a function of LFP frequency. Note 
that each component captures state-dependent fluctuations in LFP amplitude across several frequency bands. 
(D) The mean autocorrelation of principal components across all recording sessions and animals (± SEM). The 
prominent side peaks of principal components 1, 2 & 3 at ± 23 minutes reflect the periodic nature of spectral 
properties captured by these components, and match the reported duration of sleep/wake cycles. In contrast, 
principal component 2 displayed no side peaks and a much shorter half-width (blue trace), indicating that this 
component captures rapid and aperiodic fluctuations in spectral properties.
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Clustering of brain states in PCA-derived state-space. We computed the optimal number of clusters 
across brain state space by clustering data with a k-means clustering algorithm assuming between 2 to 8 clusters 
(Fig. 3A). The optimal number of state-space clusters was determined by computing the squared Euclidean dis-
tance between all resultant data clusters for each assumed number of clusters. Optimal separation of state-space 
clusters occurred with the initial assumption of 3 data clusters (Fig. 3A). Therefore, we clustered all state-space 
data into 3 clusters. To relate each state space cluster to sleep/wake states that have been scored using polisom-
nography, we compared LFP power spectra during each state to data from Jha et al. (2006)17. Based on this com-
parison, we classified resultant states as presumed slow-wave-sleep (pSWS), presumed quiet-awake state (pQAS), 
and presumed rapid-eye-movement-sleep/active-state (pREM/AS). By plotting the distribution of clustered data 
across the first two components of PCA-derived state-space, one can observe that classification of brain states is 
consistent across different recording sessions and animals (Fig. 3C).

To show how animals traversed state space over time, we computed the first derivative across each of the first 
two principal components, and combined this information to construct velocity vectors in state-space (Fig. 3D). 
This approach revealed characteristic trajectories between all brain states. For example, when observed across the 
first two principal components, animals first entered the pSWS cluster from the lower right quadrant, before cir-
culating in a clockwise fashion through the pSWS cluster to finally exit from the upper right quadrant (Fig. 3D). 
Similar characteristic trajectories were observable for the other brain states. Collectively, state-space trajectories 
support the hypothesis that resting/awake brain states are best represented by a continuum of constantly fluctuat-
ing neuronal variables, with states overlapping and flowing into one another18.

Figure 3. Objective classification of brain state by k-means clustering of data in state-space. (A) Data were 
clustered using a k-means clustering algorithm with the initial assumption of between 2 to 8 data clusters. 
Squared Euclidean distance between resultant clusters was maximal assuming 3 clusters, indicating that state/
space data is optimally classified into 3 brain state clusters (error bars ± SEM). (B) The population average 
power spectrum computed across clustered brain states. Based on spectral characteristics of each state, clustered 
brain states were putatively labeled either presumed SWS (blue trace, slow wave sleep), quiet awake (black trace, 
pQAS), or rapid-eye-movement/active-state (red trace, pREM/AS). (C) The distribution of brain state data 
clusters across the first two principal components for all recording sessions and animals (n = 23). The mean of 
each cluster in state space is represented by the center of each ellipse, while standard deviation is represented by 
eccentricity along each axis. Note that brain states consistently localize in the same regions of state space across 
recordings and animals. (D) The number of samples binned across the first two components of state space 
provides a heat map of where animals spent the most time in state/space. Velocity vectors were overlaid to show 
the mean trajectories animals traversed through state space. (E) The percentage of time spent in each clustered 
sleep/wake state for each recording session. **p < 0.01, ***p < 0.001, kruskal-wallis test, Bonferroni corrected 
p-values. (F) The population average rate of transitions between brain states. Note that the most frequency 
state transitions occurred between pREM/AS and pQAS, which are maximally separated fluctuations along the 
second principal component axis.
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To uncover the regions of state-space where animals spent the most time, we divided the first two principal 
components of state space up into bins and counted the number of data samples that fell into each bin (Fig. 3D). 
This analysis revealed that animals tended to dwell for the most time in the lower half of the pSWS cluster. 
This was confirmed by computing the percentage of time spent in each brain state data cluster, with animals 
spending 40.3 ± 1.9% of time in the pSWS state, 31.9 ± 1.5% in the pREM/AS, and 27.8 ± 1.9% in the pQAS (all 
errors are ±standard error mean). In line with this, animals spent significantly more time in the pSWS state than 
other states (Fig. 3D, p < 0.01 Kruskal-Wallis test, Bonferroni corrected). Despite spending the most time in the 
pSWS state, the most common state transitions occurred between the pREM/AS and pQAS (pREM/AS → pQAS 
29.5 ± 6.1%, pQAS → pREM/AS 34.4 ± 7.2% of all transitions, respectively, Fig. 3F, all sessions Supplementary 
Figure 2). Transitions between pQAS and pREM/AS states were more frequent because these states are predom-
inantly separated by variance in spectral amplitude captured by the second principal component, which was 
earlier shown to fluctuate on a shorter time scale to other components (Fig. 2D).

Figure 4 displays how spectral power in the delta, theta, alpha, and gamma frequency bands fluctuates across 
state space. Given that each principal component captures covariance across several frequency bands, these 
plots help to form an intuitive understanding of how the amplitude of signals in these physiologically relevant 
frequency bands are modulated across state space. For comparison with animal behavior, we have also plotted 
the mean accelerometer across state space (Fig. 4E), and the cross-correlation of µECoG signal amplitude and 
accelerometer power (Fig. 4F). Periods of movement corresponded to moments of elevated gamma power and 
reduced low-frequency (<16 Hz) power. One interesting aspect of these results is that our data driven brain state 
classification approach seems to have clustered epochs of REM and active awake in the same state, reflecting that 
spectral signatures of these states are inherently similar.

Cross-frequency interactions across brain states. Cross-frequency phase amplitude coupling (PAC) 
has been proposed as a key mechanism for synchronizing neural networks across multiple spatial and temporal 
scales19. Given that fluctuations in the spectral signatures of neural activity can be used to define brain state, we 
next asked if each clustered brain state displayed different signatures of cross-frequency interaction. To assess 
cross-frequency coupling we computed bicoherence, a third order spectral measure that quantifies the relation-
ship between three frequencies. In practice, results for bicoherence are very similar to those of PAC. While for 
bicoherence the dependence on three frequencies is explicit, with the third frequency constrained to be the sum 
of the first two, this dependence is implicit in PAC and is contained in the requirement that the filter for the high 
frequency band must be relatively wide and is recommended to be at least twice as large as the lower frequency20. 
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Figure 4. Distribution of LFP and accelerometer power across state space. (A–D) Plots represent the session 
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Such filter settings for PAC, which require re-filtering the data with a different filter for each low frequency, are 
not only a large computational burden, but such filters also cause smearing across frequencies. In particular, in 
contrast to PAC, for bicoherence higher harmonics of narrow band rhythms occur as sharp peaks and can be 
distinguished easily from interactions between wider bands.

State-dependent bicoherence analysis revealed several cross-frequency PAC bands that varied as a func-
tion of resting/awake brain state (Fig. 5). Strongest bicoherence was measured between delta oscillations 
(~1 Hz) and high gamma (60–200 Hz) during the pSWS state (bicoherence 0.120 ± 0.025 SD). The strength 
of delta/high gamma bicoherence was significantly reduced in the pREM/AS and pQAS (pREM/AS bicoher-
ence = 0.023 ± 0.009 SD, pQAS bicoherence = 0.036 ± 0.016 SD, p < 0.0001 Kruskal-Wallis test, Bonferroni cor-
rected). We similarly observed strong coupling between delta and alpha oscillations in the pSWS state (Fig. 5A) 
that was significantly reduced in other brain states (pSWS bicoherence = 0.075 ± 0.018 SD, pQAS bicoher-
ence = 0.040 ± 0.017 SD, pREM/AS bicoherence = 0.028 ± 0.007 SD, p < 0.0001 Kruskal-Wallis test, Bonferroni 
corrected). Cross-frequency coupling for the delta/high gamma and delta/alpha frequency bands likely reflects 
the phase locking of spiking activity and spindles to the up state of cortical slow oscillations during the pSWS state. 
In addition to these frequency bands, we observed weak alpha/high gamma bicoherence that was strongest in the 
pQAS state (Fig. 5B, pSWS bicoherence = 0.017 ± 0.002 SD, pQAS bicoherence = 0.030 ± 0.015 SD, pREM/AS 
bicoherence = 0.018 ± 0.002 SD, p < 0.001, Bonferroni corrected). All analyses presented thus far were computed 
on global average rereferenced µECoG signals (see methods for preprocessing steps), a process that eliminates 
signal components common to all µECoG channels, such as movement artifacts or electrical noise. However, this 
preprocessing step may also eliminate physiological signals that are commonly measured across µECoG channels. 
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To control for this, we recomputed bicoherence analyses for non-rereferenced µECoG signals. In addition to the 
previously mentioned bands involved in cross-frequency coupling, this analysis revealed bicoherence between 
theta and gamma frequencies that was strongest during the pREM/AS state (Supplementary Figure 3, pREM 
bicoherence = 0.042 ± 0.006 SEM, pSWS bicoherence = 0.024 ± 0.005 SEM, pQAS bicoherence = 0.030 ± 0.004 
SEM). Therefore, each clustered brain state displays a characteristic pattern of cross-frequency interactions, delta/
high gamma and delta/alpha coupling for the pSWS state, alpha/high gamma coupling for the pQAS state, and 
globally synchronous theta/gamma coupling for the pREM/AS state. Now that we have identified how signatures 
of spectral amplitude and local cross-frequency interaction fluctuate as animals transition between states, we next 
focus on investigating how patterns of large-scale cortical synchronization are reorganized across states.

State dependent patterns of large-scale cortical synchronization. To identify the carrier frequen-
cies of large-scale cortical synchronization, we computed the phase-locking value (PLV) between all pairs of 
µECoG channels for frequencies 0.3–100 Hz. Figure 6 displays the global average PLV spectrum across the three 
clustered brain states. The largest across-state differences were observed in delta, theta, and alpha frequency 
bands. Delta phase synchronization was strongest during the pSWS state (PLV = 0.37 ± 0.02 SEM), while pREM/
AS and pQAS states were characterized by elevated theta (PLV = 0.46 ± 0.01 SEM) and alpha (PLV = 0.30 ± 0.02 
SEM) synchronization, respectively (Fig. 6). Kruskal-Wallis analysis of variance confirmed that PLV in these fre-
quency bands was significantly modulated across brain states (p < 0.05), however only changes in PLV for delta 
and theta frequency bands remained significant after Bonferroni correction (p < 0.05, n = 80 frequencies). Given 
that the strength and carrier frequency of large-scale synchronization is systematically modulated with changes in 
brain state, we next recomputed PLV in delta, theta, and alpha frequency bands in a time resolved manner using 
a one-minute sliding window. This window length was chosen to match the temporal structure of principal com-
ponents, enabling an examination of fluctuations in PLV’s across brain state-space and with animal movement.

To assess how cortical synchronization co-varies with changes in animal movement, we computed the 
cross-correlation of accelerometer and PLV time series. This analysis revealed that movement epochs were 
preceded by prolonged periods of strong theta synchronization (corr = 0.21 ± 0.03 SEM), and weak delta syn-
chronization (corr = −0.14 ± 0.05 SEM, Fig. 6, right). At the same time, animal movement was negatively 
correlated with alpha PLV time series in a relatively short window of ± 2 minutes around movement epochs 
(corr = −0.19 ± 0.04 SEM). Interestingly, accelerometer-PLV cross-correlation plots in all frequency bands con-
verge on zero in the minutes following movement epochs, suggesting that movement has little predictive power 
over upcoming changes in cortical synchronization. In contrast, the relatively strong correlation of PLV with 
accelerometer time series up to 10 minutes prior to movement epochs suggest that measures of cortical synchro-
nization may be predictive of upcoming movement.

We next examined how PLV’s in the delta, theta, and alpha carrier frequencies fluctuated across PCA derived 
state space. Increases in the global mean of PLV’s in each carrier frequency were clearly localized to specific 

Figure 6. Spectral signatures of cortical synchronization across brain states. (A) Population average phase 
locking value (PLV) computed within each brain state (n = 23 sessions). PLV’s were computed between all 
pairs of µECoG channels to measure patterns of global cortical synchronization. PLV displayed significant 
state-dependent modulations in the delta, theta, and alpha frequency bands. Significant modulations are shown 
as bars at the bottom of the plot (gray bar – no correction for multiple comparisons, black bar – Bonferroni 
corrected p-values, n = 80 frequencies). (B) Population average cross-correation of accelerometer and PLV time 
series for the delta, theta, and alpha carrier frequencies (± SEM, n = 23). Note the strong posistive correlation of 
theta PLV up to 10 minutes prior to movement epochs. Conversley, alpha PLV is negatively correlated in a tight 
window around movement periods.
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regions of state space, with delta PLV localizing to the pSWS state, theta PLV localizing in pREM/AS and extend-
ing into the pQAS, and alpha PLV predominantly localizing to the pQAS (Fig. 7A). To assess how PLV’s in iden-
tified frequency bands were modulated around specific brain state transitions, we computed time-resolved PLV’s 
in a window ± 240 seconds around each class of state transition. Since animals had varying baseline PLV’s for 
each recording session, PLV’s were z-score normalized within each recording prior to computing mean PLV’s 
time-locked to state transitions. The most commonly occurring state transitions were marked by a clear reorgan-
ization of global cortical synchronization across delta, theta, and alpha frequency bands (Fig. 7B). For example, 
the transition between pSWS and pQAS led to a sharp drop in delta PLV, paired with a sharp increase in theta 
and alpha PLV’s (Fig. 7B). The most frequent state transitions, from pREM/AS to pQAS and vice versa, revealed 
state-dependent fluctuations of PLV’s on a much shorter time-scale, particularly in the alpha band. These results 
reflect the rapid nature of transitions between pREM/AS and pQAS that are maximally separated along the sec-
ond principal component state space axis.

To ensure that PLV results were not contaminated by measuring common sources across µECoG electrodes, 
we computed the imaginary part of coherence between all pairs of channels for each brain state. This crucial con-
trol analysis exclusively considers the non-zero phase lagged component of coherency, by definition mathemati-
cally excluding effects of volume conduction that occur with zero phase lag21. Imaginary coherence spectra were 
in agreement with PLV results, with clear peaks in the delta, theta, and alpha frequency bands (Supplementary 
Figure 4). These results indicate that changes in PLV’s observed across brain states are caused by variations in the 

Figure 7. State-dependent fluctuations in cortical synchronization. (A) Population average PLV for delta (left), 
theta (middle), and alpha (right) frequency bands across the first two principal components of state space. 
In each plot population average state-space trajectories are overlaid to illustrate how animals transitioned 
between brain states. PLV’s were z-score normalized within session prior to computing mean PLV to account 
for differences in baseline connectivity between animals and sessions. The location of pSWS, pQAS, and pREM/
AS clusters in state space is shown in the upper right for reference, while the frequency of state transitions 
is shown in the bottom left. Note that each clustered brain state is predominantly characterized by cortical 
synchronization in a different carrier frequency band. In addition, elevated PLV’s in the theta band extend from 
the pREM/AS cluster into the pQAS cluster. (B) Mean (± SEM) z-score normalized PLV’s time-locked to the 
most frequent state transitions. The identity of brain state transition is indicated above each plot, while PLV 
carrier frequency is labeled on the y-axis. Note that most state transitions are marked by distinct fluctuations in 
cortical synchronization across each carrier frequency band. In addition, transitions between pQAS and pREM/
AS display more rapid reorganization of cortical synchronization than transitions to and from the pSWS state.
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phase consistency of physiological rhythms distributed across cortex, rather than measuring common sources 
across electrodes.

Fragmentation and synchronization of cortical networks across brain states. Until now we have 
shown how patterns of global cortical synchronization are modulated across brain states. However, global mean 
PLV’s place an equal weight on both local and long range cortical connections. Brain networks are proposed to 
be organized according to a small-world topology, where dense local connections form network clusters, and a 
small number of long-range connections forming links between clusters22. Given these proposed organizational 
principles, we next set out to investigate how the brain balances the strength of local within-region connec-
tions, and long range between-region connections across brain states. For within-region connections we clustered 
µECoG recording electrodes that were positioned over occipital, parietal, and temporal cortical regions, respec-
tively (Fig. 8A, blue arrows). Within-region functional connectivity was then defined as the mean PLV between 
all pairs of electrodes within each regional cluster. While between-region functional connectivity was defined as 
the mean PLV computed between all pairs of electrodes that did not belong to the same regional cluster (Fig. 8A, 

Figure 8. Comparison of short-range within-region, and long-range between-region functional connectivity. 
(A) µECoG electrodes were grouped into either occipital (red), parietal (blue), or temporal (green) regions 
based on the cortical area that was underlying each electrode. PLV was then computed for pairs of electrodes 
that fell within the same group (dark blue arrows) and pairs of electrodes that were between groups (red 
arrows). (B) Difference between within-region and between-region PLV, plotted as a function of carrier 
frequency. Large values of PLV(within – between region) suggest that short-range connections dominate over long-range 
connections, indicating a dissociation of cortical regions. While small values of PLV(within – between region) indicate 
that the strength of short-range and long-range connections is similar, inferring that the cortex is in a state of 
global synchronization. Note that long-range cortical synchronization is maximally fragmented during the 
pSWS state at the delta carrier frequency. In contrast, globally synchronized theta oscillations can be observed 
during the pREM/AS state. Significant state-dependent modulation of PLV(within – between region) is shown as bars 
at the bottom of the plot (gray bar – no correction for multiple comparisons p < 0.05, black bar – Bonferroni 
corrected p < 0.05, n = 80 frequencies). (C) Strength of within-region PLV (dark blue) and between-region PLV 
(red), computed using a one-minute sliding window across an example recording from animal #2. The result 
of objective brain state classification is shown as a color bar at the bottom of the plot (pSWS – blue, pREM/
AS – red, pQAS – black). State transitions lead to marked changes in patterns of local and long-range cortical 
synchronization. Note how within-region and between-region theta PLV traces converge and diverge as animals 
enter and exit the pREM/AS (middle plot).
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red arrows). To compare the relative strength of local and long range synchronization across brain states, we 
subtracted between-region PLV’s from within-region PLV’s. High values of PLV(within − between region) indicate that 
local interactions are much stronger than long-range interactions, and by extension that brain dynamics are 
dominated by the existence of locally coherent but globally fragmented cortical networks. In contrast, low values 
of PLV(within − between region) indicate that short-range and long-range synchronization are of similar strength, indi-
cating that local dynamics are embedded within globally synchronized cortical networks. The population average 
PLV(within − between region) spectrum across all four brain-states is shown in Fig. 8B. This analysis revealed that pSWS 
and pREM/AS states are characterized by two contrasting phenomena; the fragmentation of long-range cortical 
connections in the delta carrier frequency during pSWS, and the global synchronization of theta rhythms during 
pREM/AS. In contrast to the identified delta and theta bands, alpha band PLV(within − between region) was relatively 
invariant across brain states (Fig. 8B, p > 0.05 Kruskal-Wallis test).

To illustrate how local- and long-range cortical synchronization evolves across multiple slep/wake cycles, 
Fig. 8C shows average within-region and between-region PLV time series in the delta, theta, and alpha fre-
quency bands from an example recording. Reflecting the PLV(within − between region) spectrum, the relative strength 
of measures of short- and long-range functional connectivity systematically fluctuate across brain states. For 
example, during the pSWS state within-region PLV in the theta band (blue trace, middle plot) was stronger 
than between-region PLV (red trace, middle plot). However, as animals transition to the pREM/AS state (via 
pQAS), both within- and between-region PLV traces converge such that the strength of short- and long-range 
measures of synchronization were almost equal, indicating a transition to a state of global theta synchronization 
(Fig. 8C, middle). Similarly, the fragmentation of cortical networks mediated by the delta carrier frequency can 
be observed as the divergence of within-module and between-module PLV traces during the pSWS state (Fig. 8C, 
top). Collectively, these results show that the relative strength of synchronization between local and distributed 
cortical networks dynamically reconfigures as the brain transitions between the various states of the resting/
awake alternations.

Discussion
Transitions in state are ubiquitous in the brain, however the consequences of such transitions for the organization 
of cortico-cortical functional connectivity remain unclear. To obtain an objective classification of brain state, we 
mapped time-resolved spectral properties into lower-dimensional state-space using principal component anal-
ysis. Brain-state clusters in state-space were consistent across all animals, with each animal following recurring 
trajectories through the states of the resting/awake alternations. Functional connectivity changed systematically 
across brain states, with largest changes occurring in the phase synchronization of delta, theta, and alpha oscilla-
tions. Presumed SWS state and REM/AS displayed contrasting modes of large-scale cortico-cortical functional 
connectivity, where pSWS was characterized by locally synchronized delta oscillations, and pREM/AS by globally 
synchronized theta oscillations. Collectively, our data provide strong evidence that large-scale functional interac-
tions in the brain dynamically reconfigure across intrinsic brain states.

It has been repeatedly shown in the last 50 years that different states of vigilance in humans and animals 
are principally defined by specific patterns of EEG activity1, 23, 24. Brain states have classically been delineated 
using standard polysomnography, a method that combines information from electrocorticographic, electroocu-
lographic, and electromyographic data modalities to classify sleep and wake states25. We employed a completely 
data-driven brain state classification method based solely on the time-varying nature of cortical LFP spectral 
properties. Similar data-driven approaches in mice have achieved a state classification accuracy of over 90%26. In 
contrast to classic brain state classification methods, which infer the existence of several discrete and independent 
states, our data support the view that major brain states exist as a continuum18, 27. Additionally, most of the major 
brain state clusters present in our data appeared to consist of a number of sub-states, which are best delineated by 
examining data trajectories in state-space. These observations suggest that the temporal evolution of brain state 
can be conceptualized as a multistable process, defined by a recurring set of neural conditions, with some stages 
displaying a strong degree of stability (e.g., pSWS), while others display a greater dynamical variability (e.g., pQAS 
and pREM/AS). Therefore, despite the convenience of treating brain states as independent and discrete, as most 
classical approaches entail, data reported here suggest that it may be more intuitive to quantify brain state by the 
temporal evolution of neuronal variables through state space.

Many previous studies on large-scale functional connectivity in the brain have computed connectivity meas-
ures across large temporal windows, with the implicit assumption that the dynamics of connectivity are station-
ary. While these studies have indeed led to breakthroughs such as the identification of resting state networks2, 28, 29 
and rich club nodes30, 31 it is widely accepted that these approaches do not capture the true temporal dynamics of 
functional interaction in the brain14, 15. This is illustrated, for instance, by recent fMRI work showing that a third 
of human subjects fall asleep after 3 minutes in the scanner, with the global structure of hemodynamic signal 
correlations changing following the induction of sleep11. Apart from sleep, BOLD based functional connectivity 
has been shown to reorganize as a result of more subtle state transitions, such as engaging in cognitive tasks32, 

33, learning34, 35, as well as more stark state transitions such as general anesthesia36. However, in contrast to such 
studies of BOLD functional connectivity, which mostly reveal correlated fluctuations in the amplitude of very 
slow neural dynamics37, we report here the state-dependent reorganization in phase synchronization of faster and 
more physiologically meaningful oscillations38.

Early studies on functional connectivity in the cat reported that delta oscillations were highly synchronous 
up to a distance of several millimeters in the cortex39. However, human ECoG studies during both SWS40, and 
anesthesia7, have shown that delta oscillations become increasingly asynchronous with greater inter-electrode 
distance. Although first appearing contradictory, the abovementioned studies strongly support our findings on 
short- and long-range functional connectivity during pSWS. Namely, we report that during pSWS delta oscilla-
tions are highly synchronous within cortical modules, but at the same time long-range inter-areal connections are 
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weak, reflecting the functional fragmentation of widely distributed cortical networks. Such temporal and spatial 
disintegration of cortical functional connectivity during SWS and anesthesia is proposed to be the underlying 
cause for the loss of consciousness during these states9, 41, 42. In addition to state transitions between sleep and 
awake, the fragmentation of cortical networks has also been shown to manifest during pathophysiological tran-
sitions in brain state, such as the onset of epileptic seizures43. Indeed, abnormalities in the functional integration 
and fragmentation of cortical networks not only define the conditions for seizure onset, but also how cortical 
network dynamics propagate through a number of recurring seizure ‘sub-states’44–46.

In contrast to the fragmentated nature of delta cortical oscillations, theta oscillations tended to synchronize 
both short- and long-range connections in a state-dependent manner, with pREM/AS most strongly character-
ized by global theta synchronization. Despite displaying periods of widely synchronized activity within cortex, 
theta oscillations arise through reciprocal interactions between pacemakers in the medial septum, hippocampus, 
and entorhinal cortex47. One potential function of widespread cortical theta synchronization, as observed dur-
ing pREM/AS, could be to temporally coordinate projections from the neocortex to the hippocampus, facilitat-
ing the replay and consolidation of recent memories during REM sleep47–49. Indeed, the globally synchronous 
theta/gamma cross-frequency coupling observed in cortical LFPs may represent the spectral fingerprint of such 
cortico-hippocampal information transfer50, 51.

The next steps should be towards a similar state-dependent examination of functional connectivity in humans 
with less spatially specific data modalities such as EEG and magnetoencephalography (MEG). Similar to results 
presented here for sleep/wake state transitions, it may be that the rapid reorganization of large-scale functional 
interaction represents the most informative neural signatures of the spontaneous drift of mental activity during 
wake resting periods. The continuing shift towards investigating and modulating large-scale neural dynamics 
within the context of intrinsically varying brain states will provide valuable insights into the neural mechanisms 
underlying consciousness, and will lead to the development of novel network-based tools for defining brain states 
under both normal and pathophysiological conditions.

Materials and Methods
Animals. Five adult female ferrets (Mustela putorius furo) were used for experiments (Euroferret, Dybbølsgade, 
Denmark). Each ferret was kept in a standard ferret cage Type 4541 P by Tecniplast (Hohenpeißberg, Germany) 
with an enriched environment under controlled ambient conditions (21°, 12-h light/dark cycle, lights on at 8:00 
a.m.). The animals had ad libitum access to food pellets and to tap water. All behavioral testing was done dur-
ing the light cycle between 12 a.m. and 6 p.m. All experiments were approved by the independent Hamburg 
state authority for animal welfare (BUG Hamburg) and were performed in accordance with the guidelines of the 
German Animal Protection Law.

Custom µECoG design. We chose micromachining technology52 to design and develop a µECoG array that 
matches the anatomy of the ferret brain. The µECoG arrays had 64 platinum electrodes with a diameter of 250 µm, 
and were arranged in a hexagonal formation with an interelectrode distance of 1.5 mm. Thin-film metallization 
of electrodes and connection lines was sandwiched between two polyimide layers that served as substrate and 
insulation. Figure 1A displays a schematic diagram of the µECoG layout.

ECoG implantation. Animals were initially anesthetized with an injection of a mix of ketamine (15 mg/
kg), atropine (0.15 mg/kg) and medetomidine (0.08 mg/kg). Physiological parameters such as the ECG and rectal 
temperature were monitored throughout the surgery to maintain the state of the animal. To maintain anesthesia, 
additional ketamine (20 mg/kg) was given after each hour or on demand. All surgical procedures were performed 
under sterile conditions. After preparing the operating area, a craniotomy was performed over the left posterior 
cortex. The dura was carefully reflected, and the µECoG array was gently placed on the surface of the cortex such 
that it covered occipital, temporal and parietal areas (Fig. 1B). The dura was then folded back over the µECoG, 
and an absorbable artificial dura (Braun, Germany) was placed above the surgical area. The excised piece of bone 
was fixed back in place with titanium plates and screws, gaps were filled with fast set putty (Synthes, Germany). 
Finally, the µECoG interface was placed on top of the skull and fixed in place with dental cement. After the sur-
gery the animals received preventive analgesics (carprofen, 4 mg/kg) and antibiotics (enrofloxacin, 5 mg/kg) for 
8 days.

Alignment of µECoG placement and parcellation of cortical areas. For each animal, the position of 
µECoG arrays over posterior cortex was recorded during surgery by taking photographs through a Zeiss OPMI 
pico microscope. The position of all 64 µECoG electrodes was then projected onto a scaled illustration of a model 
ferret brain. The precise position of a reference electrode on the scaled ferret brain was measured, along with 
the angle required to rotate the µECoG such that all electrodes aligned with the picture from surgery. A rotation 
matrix was then used to translate the location of all 64 µECoG electrodes onto the standard map of the ferret 
cortex53. The cortical region underlying each electrode was then noted, with regions clustered more generally into 
occipital, parietal, and temporal brain regions (Fig. 8A).

Recording procedure. After recovery from surgery, ferrets were gradually accustomed to a recording box 
(45 × 20 × 52 cm) that was placed in a dark sound attenuated chamber. Once animals were ready for recordings, 
they were connected to a counter-balanced recording cable that was sufficiently long to enable them to move 
freely throughout the entire recording box. To monitor animal movement, an accelerometer was tightly attached 
to the cable-interface close to the head. Ferrets had no access to food or water during recording sessions. For each 
animal, we obtained at least 5 separate recording sessions that were longer than 2 hours. µECoG signals were 
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digitized at 1.4 kHz (0.1 Hz high pass and 357 Hz low pass filters), and sampled simultaneously with a 64 channel 
AlphaLab SnRTM recording system (Alpha Omega Engineering, Israel). From five animals, we analyzed a total of 
23 recording sessions (recordings per animal: 5, 5, 4, 5, 4).

Data Analysis. All data analysis was performed using custom scripts for Matlab (Mathworks Inc). To control 
for drifting and movement related artifacts, the global average signal across the entire µECoG grid was subtracted 
from each LFP time series. Noise epochs were detected using a threshold of 10 standard deviations. Data were 
rejected in a window of ± 10 seconds from all time points that exceeded this threshold. To compute time-resolved 
spectra, LFP signals were convolved with a series of 80 logarithmically spaced Morlet wavelets spanning frequen-
cies 0.3–100 Hz. Spectral power was then computed by taking the square of the absolute value of time frequency 
estimates in the time domain. LFP spectrograms were then smoothed in the time domain using a Gaussian kernel 
of one-minute width (for comparison of smoothed and raw spectra PCA, see Supplementary Figure 1).

To project time-varying spectral properties into state space, we first z-scored the analytic amplitude of µECoG 
signals over time to normalize amplitude fluctuations across all frequencies (Fig. 2A, right). Principal compo-
nent analysis was then performed on the z-scored amplitude matrix. The principal components that collectively 
explained more than 80 % of variance in spectra were used to construct the brain state space. Inspection of the 
principal component eigenvector coefficients as a function of LFP frequency revealed that principal components 
captured information spanning all frequency bands (Fig. 2C). To compute trajectories in state space we first took 
the first derivative of principal component time series to acquire the rate of change across each state space axis. 
Then the derivatives of the first two principal components were combined to generate state space velocity vectors 
for each data sample. Velocity vectors were binned according to location in state space, and the mean state space 
velocity vector for each bin was computed. Finally, mean velocity vectors were overlaid as topological ‘quiver’ 
plots on state space plots, where the direction and length of vectors indicate direction and rate of change through 
state space (for example, Fig. 3D).

To compute the optimal number of clusters across brain state space, we performed k-means cluster analysis 
assuming between 2 to 8 clusters (Fig. 3A). The optimal number of clusters was defined by computing the squared 
Euclidean distance between resultant data clusters. For each recording session, data from one electrode placed 
over visual cortical area 21 was used to project time-varying spectral properties into state space. To account for 
variance in clustering results based on differing initial cluster estimates, we repeated k-means clustering 100 times 
and took the most common cluster assignment for each data point.

Bicoherence. Bicoherence is a normalized third order statistical moment to quantify cross-frequency cou-
pling. In its most simple version, which is used here, it is a univariate measure estimating coupling within and not 
across sensors. It is defined as
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In our implementation, z(f) is the Fourier transform of a Hanning windowed signal in a segment, and aver-
aging is done across all segments. N is a normalization factor constructed from 3-norms of signals for each fre-
quency as suggested in Shahbazi et al. (2014)54. In contrast to all other normalization, this normalization has the 
properties that a) the absolute value of bicoherence is bounded by one, and b) the normalization itself does not 
dependent on the cross-frequency coupling but only on the amplitude of signals for each frequency.

Note that bicoherence is a function of two frequencies even though it is a measure of coupling between three 
frequencies with the third frequency being the sum of the first two. The reason for constraining the third fre-
quency is that for any other setting bicoherence vanishes for continuous or task related data recordings. For exam-
ple, this is analogous to coherence, which is a function of one frequency even though it is a measure of a coupling 
between two signals. Linear coupling between signals of two different frequencies vanishes for continuous data.

Functional connectivity analyses. To quantify phase synchronization between µECoG signals, we 
computed the phase locking value (PLV) across frequencies 0.3–100 Hz. Briefly, the instantaneous phase θ was 
extracted from analytic signals that were produced by convolving µECoG time series with complex Morlet wave-
lets. PLV between channels A and B at carrier frequency f was then defined by the following formula55
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PLV was computed between all pairs of µECoG electrodes. From subsequent PLV functional connectiv-
ity matrices we extracted three variables for each recording session: the global mean PLV, the average PLV of 
within-region channel pairs, and the average PLV of between-region channel pairs. State-dependent PLV was 
computed by pooling together all data samples from each clustered brain state for each recording session. In 
addition, we computed cortico-cortical PLV using a sliding window of one-minute duration with one second step 
size. This temporal scale of time-resolved PLV was chosen to match spectral smoothing prior to PCA, allowing a 
direct examination of how large-scale patterns of functional connectivity in the brain evolve through state space. 
Finally, to ensure that phase synchronization effects were not derived from measuring common sources across 
µECoG electrodes, we additionally computed the imaginary part of coherence21.

In addition to phase-based measures of functional connectivity, we also computed the amplitude envelope 
correlation of µECoG signals. Prior to computing amplitude correlation, time-frequency estimates from pairs of 
signals were orthogonalized to control for the effects of common sources being measured on both electrodes2. 
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This crucial step removes zero phase–lagged components shared between simultaneously recorded µECoG sig-
nals, and ensures that only nonzero phase–lagged signal components are considered for amplitude envelope 
correlation analysis. Following orthogonalization, amplitude envelope time series were computed by taking the 
absolute value of analytic signals. The linear correlation coefficient was then computed between amplitude time 
series based on objective brain state classification.

Statistics. All statistical tests were performed in MATLAB (Mathworks). To test if data conformed to a 
normal distribution, we performed Kolmogorov-Smirnov tests on each data distribution. Since most data vio-
lated the assumption of a normal distribution, non-parametric Kruskal-Wallis tests were used to quantify how 
neurophysiological and functional connectivity metrics differ between clustered brain states. Where applicable, 
Bonferroni correction was used to adjust p-values to account for multiple comparisons.

References
 1. Steriade, M. & McCarley, R. Brain control of wakefulness and sleep. (Springer, 2005).
 2. Hipp, J. F., Hawellek, D. J., Corbetta, M., Siegel, M. & Engel, A. K. Large-scale cortical correlation structure of spontaneous oscillatory 

activity. Nat. Neurosci. 15, 884–890 (2012).
 3. He, B. J., Snyder, A. Z., Zempel, J. M., Smyth, M. D. & Raichle, M. E. Electrophysiological correlates of the brain’s intrinsic large-scale 

functional architecture. Proc. Natl. Acad. Sci. USA 105, 16039–16044 (2008).
 4. Engel, A. K. & Singer, W. Temporal binding and the neural correlates of consciousness. Trends Cogn. Sci. 5, 16–25 (2001).
 5. Supp, G. G., Siegel, M., Hipp, J. F. & Engel, A. K. Cortical hypersynchrony predicts breakdown of sensory processing during loss of 

consciousness. Curr. Biol. 21, 1988–1993 (2011).
 6. Massimini, M. et al. Breakdown of cortical effective connectivity during sleep. Science 309, 2228–2232 (2005).
 7. Lewis, L. et al. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc. Natl. Acad. Sci. 

USA 109, 3377–3386 (2012).
 8. Purdon, P. L. et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc. Natl. Acad. Sci. U. S. 

A. 110, E1142–51 (2013).
 9. Ferrarelli, F. et al. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc. Natl. Acad. 

Sci. USA 107, 2681–2686 (2010).
 10. Tononi, G. Consciousness as integrated information: A provisional manifesto. Biol. Bull. 215, 216–242 (2008).
 11. Tagliazucchi, E. & Laufs, H. Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between 

wakefulness and sleep. Neuron 82, 695–708 (2014).
 12. Doucet, G. et al. Patterns of hemodynamic low-frequency oscillations in the brain are modulated by the nature of free thought 

during rest. NeuroImage 59, 3194–3200 (2012).
 13. Delamillieure, P. et al. The resting state questionnaire: An introspective questionnaire for evaluation of inner experience during the 

conscious resting state. Brain Res. Bull. 81, 565–573 (2010).
 14. Hutchison, R. M. et al. Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage 80, 360–378 (2013).
 15. Allen, E. A. et al. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24, 663–676 (2014).
 16. Marks, G. A. & Shaffery, J. P. A preliminary study of sleep in the ferret, Mustela putorius furo: a carnivore with an extremely high 

proportion of REM sleep. Sleep 19, 83–93 (1996).
 17. Jha, S. K., Coleman, T. & Frank, M. G. Sleep and sleep regulation in the ferret (Mustela putorius furo). Behav. Brain Res. 172, 

106–113 (2006).
 18. Zagha, E. & McCormick, D. A. Neural control of brain state. Curr. Opin. Neurobiol. 29, 178–186 (2014).
 19. Hyafil, A., Giraud, A.-L., Fontolan, L. & Gutkin, B. Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and 

Functions. Trends Neurosci. 38, 725–740 (2015).
 20. Aru, J. et al. Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 31, 51–61 (2015).
 21. Nolte, G. et al. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 115, 

2292–2307 (2004).
 22. Bassett, D. S. & Bullmore, E. Small-World Brain Networks. The Neuroscientist 12, 512–523 (2006).
 23. Dement, W. The occurrence of low voltage, fast, electroencephalogram patterns during behavioral sleep in the cat. Electroencephalogr. 

Clin. Neurophysiol. 10, 291–296 (1958).
 24. Sterman, M. B. & Wyrwicka, W. EEG correlates of sleep: evidence for separate forebrain substrates. Brain Res. 6, 143–163 (1967).
 25. Iber, C., Ancoli-Israel, S., Chesson Jr., A. L. & Quan, S. F. The AASM manual for the scoring of sleep and associated events: rules 

terminology and technical specifications 1st ed. (American Academy of Sleep Medicine, 2007).
 26. Sunagawa, G. A., Séi, H., Shimba, S., Urade, Y. & Ueda, H. R. FASTER: An unsupervised fully automated sleep staging method for 

mice. Genes Cells 18, 502–518 (2013).
 27. Gervasoni, D. et al. Global forebrain dynamics predict rat behavioral states and their transitions. J. Neurosci. Off. J. Soc. Neurosci. 24, 

11137–11147 (2004).
 28. Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using 

echo-planar MRI. Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med. 34, 537–41 (1995).
 29. Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: Anatomy, function, and relevance to disease. 

Ann. N. Y. Acad. Sci. 1124, 1–38 (2008).
 30. van den Heuvel, M. P. & Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 31, 15775–15786 (2011).
 31. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).
 32. Fornito, A., Harrison, B. J., Zalesky, A. & Simons, J. S. Competitive and cooperative dynamics of large-scale brain functional 

networks supporting recollection. Proc. Natl. Acad. Sci. 109, 12788–12793 (2012).
 33. Sun, F. T., Miller, L. M., Rao, A. A. & D’Esposito, M. Functional connectivity of cortical networks involved in bimanual motor 

sequence learning. Cereb. Cortex 17, 1227–1234 (2007).
 34. Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. USA 108, 7641–7646 

(2011).
 35. Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L. & Corbetta, M. Learning sculpts the spontaneous activity of the resting 

human brain. Proc. Natl. Acad. Sci. USA 106, 17558–17563 (2009).
 36. Boveroux, P. et al. Breakdown of within- and between-network resting state during propofol-induced loss of consciousness. 

Anesthesiology 113, 1038–1053 (2010).
 37. Schölvinck, M. L., Maier, A., Ye, F. Q., Duyn, J. H. & Leopold, D. A. Neural basis of global resting-state fMRI activity. Proc. Natl. 

Acad. Sci. USA 107, 10238–43 (2010).
 38. Engel, A. K., Gerloff, C., Hilgetag, C. C. & Nolte, G. Intrinsic coupling modes: multiscale interactions in ongoing brain activity. 

Neuron 80, 867–886 (2013).



www.nature.com/scientificreports/

1 4SCieNtifiC RePoRts | 7: 8797  | DOI:10.1038/s41598-017-08050-6

 39. Destexhe, A., Contreras, D. & Steriade, M. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex 
during natural wake and sleep states. J. Neurosci. 19, 4595–4608 (1999).

 40. Nir, Y. et al. Regional slow waves and spindles in human sleep. Neuron 70, 153–169 (2011).
 41. Tononi, G. & Massimini, M. Why does consciousness fade in early sleep? Ann. N. Y. Acad. Sci. 1129, 330–334 (2008).
 42. Massimini, M., Ferrarelli, F., Sarasso, S. & Tononi, G. Cortical mechanisms of loss of consciousness: Insight from TMS/EEG studies. 

Arch. Ital. Biol. 150, 44–55 (2012).
 43. Kramer, M. A. et al. Coalescence and Fragmentation of Cortical Networks during Focal Seizures. J. Neurosci. 30, 10076–10085 

(2010).
 44. Rummel, C. et al. A systems-level approach to human epileptic seizures. Neuroinformatics 11, 159–173 (2013).
 45. Burns, S. P. et al. Network dynamics of the brain and influence of the epileptic seizure onset zone. Proc. Natl. Acad. Sci. 111, 

E5321–E5330 (2014).
 46. Khambhati, A. N. et al. Dynamic Network Drivers of Seizure Generation, Propagation and Termination in Human Neocortical 

Epilepsy. PLOS Comput Biol 11, e1004608 (2015).
 47. Colgin, L. L. Mechanisms and functions of theta rhythms. Annu. Rev. Neurosci. 36, 295–312 (2013).
 48. Ji, D. & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10, 100–7 

(2007).
 49. Louie, K. & Wilson, M. A. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. 

Neuron 29, 145–156 (2001).
 50. Siegel, M., Donner, T. H. & Engel, A. K. Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 13, 20–25 

(2012).
 51. Colgin, L. L. Theta–gamma coupling in the entorhinal–hippocampal system. Curr. Opin. Neurobiol. 31, 45–50 (2015).
 52. Rubehn, B., Bosman, C., Oostenveld, R., Fries, P. & Stieglitz, T. A MEMS-based flexible multichannel ECoG-electrode array. J. 

Neural Eng. 6, 036003 (2009).
 53. Bizley, J. K., Nodal, F. R., Bajo, V. M., Nelken, I. & King, A. J. Physiological and anatomical evidence for multisensory interactions in 

auditory cortex. Cereb. Cortex N. Y. N 1991(17), 2172–2189 (2007).
 54. Shahbazi, F., Ewald, A. & Nolte, G. Univariate normalization of bispectrum using Hölder’s inequality. J. Neurosci. Methods 233, 

177–186 (2014).
 55. Lachaux, J. P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 

(1999).

Acknowledgements
This work was supported by funding from the DFG (GRK 1247/2, SFB 936/A2, SPP 1665/EN533/13–1, A.K.E.; 
SFB936/Z3, G.N.). We would like to thank Dorrit Bystron for her assistance with data acquisition, Malte 
Sengelmann for engineering the accelerometer, Stefan Skoruppa for technical support, and Florian Göschl for 
comments on the manuscript.

Author Contributions
I.S., K.J.H., and A.K.E. conceived and designed experiments. K.J.H. and F.P. surgically implanted arrays. K.J.H. 
performed experiments. I.S., E.G.L. and G.N. analyzed data. G.E. wrote the animal ethics permission. E.F. and T.S. 
designed and developed µECoG arrays. I.S., K.J.H., and A.K.E. wrote the paper.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-08050-6
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-08050-6
http://creativecommons.org/licenses/by/4.0/

	Dynamic reconfiguration of cortical functional connectivity across brain states
	Results
	Projection of time-varying spectral properties into state space. 
	Clustering of brain states in PCA-derived state-space. 
	Cross-frequency interactions across brain states. 
	State dependent patterns of large-scale cortical synchronization. 
	Fragmentation and synchronization of cortical networks across brain states. 

	Discussion
	Materials and Methods
	Animals. 
	Custom µECoG design. 
	ECoG implantation. 
	Alignment of µECoG placement and parcellation of cortical areas. 
	Recording procedure. 
	Data Analysis. 
	Bicoherence. 
	Functional connectivity analyses. 
	Statistics. 

	Acknowledgements
	Figure 1 µECoG design and placement over ferret posterior cortex.
	Figure 2 State-dependent fluctuations in spectral power and projection of neural data into PCA-derived state-space.
	Figure 3 Objective classification of brain state by k-means clustering of data in state-space.
	Figure 4 Distribution of LFP and accelerometer power across state space.
	Figure 5 State dependent changes in phase amplitude coupling measured using bicoherence.
	Figure 6 Spectral signatures of cortical synchronization across brain states.
	Figure 7 State-dependent fluctuations in cortical synchronization.
	Figure 8 Comparison of short-range within-region, and long-range between-region functional connectivity.




